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Abstract. In this paper we study the behavior of the sequence {an} of complex numbers satisfying the relation

an+k = q1an + q2an+1 + ... + qkan+k−1, where {qm} is a fixed sequence of complex numbers. Such kind of

sequences arise in problems of analysis, fixed point theory, dynamical systems, theory chaos and etc. For example,

investigating the spectra of triple and more than triple band triangle operator-matrices arise above mentioned

sequences which required to study the behavior of the sequence. Till now the received formulas for the spectra

of considered operator-matrices from the point of application looks like very complicated. In this work for the

eliminating of indicated flaws we apply new approach where the formulas for the spectra describe circular

domains.
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1 Introduction

Here we summarize the important knowledge in the existing literature concerning the spectra
difference operator - matrices and their generalizations. The spectrum and fine spectrum of
the difference operator-matrix ∆ over the sequences spaces c0 and c has been studied by Altay
and Basar (2005). Akhmedov and Basar (2006; 2007) have studied the fine spectrum of the
difference operator-matrix ∆ over the sequences spaces lp and bυp, where 1 = p < 8. Note that
the sequence space bυp(1 = p < 8) was studied by Basar and Altay (2003) and Akhmedov and
Basar (2007). Malafosse (2002) has studied the spectrum and fine spectrum of the operator
∆ over the sequences spaces sr where sr denotes the Banach space of all numerical sequences
x = (xn) normed by

∥x∥sr = sup
n∈N

|xn|
rn

(r > 0) .

The fine spectrum of the Zweirer operator-matrix Zs over the spaces l1 and bv has been
investigated by Altay and Karakus (2005). Now we give results concerning to the spectra
of some generalizations of difference operator-matrices. The fine spectrum of the generalized
double-band operator B(r, s) over the sequence spaces c0 and c has been studied by Altay and
Bashar (2005). Also, the fine spectrum of the operator B(r, s) over the sequence spaces l1 and
bυ has been examined by Furkan et al. (2006). The fine spectrum of the operator B(r, s) over
the sequence spaces lp and bυp, where (1 < p < ∞) has been determined by Bilgic and Furkan,
(2008). The fine spectrum of the generalized difference operator ∆ν over the sequences spaces c0
and l1 was investigated by Srivastava and Kumar (2009; 2010). In Akhmedov & El-Shabrawy,
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(2010; 2011) the authors have proved by the counter examples that some of their results are
incorrect and the corresponding corrected ones have been provided. The fine spectrum of the
operator ∆ν over the sequences spaces c has been examined in Akhmedov and El-Shabrawy,
(2010; 2011). The definition of the operator ∆ν have been modified and the fine spectrum
have been determined for the modified operator ∆ν over the sequence spaces c and lp, where
(1 < p < ∞). The fine spectrum of the generalized difference operator ∆a,b over the sequences
spaces c0, c and l1 has been studied in Akhmedov and El-Shabrawy, (2010; 2011; 2015). The
spectrum of the upper triangular double-band matrices over the sequence spaces c0 and c has
been determined by Karakaya and Altun (2010). The fine spectrum of the triple-band matrices
B(r, s, t) over c0 and c has been examined by Furkan et al (2007), over the sequence spaces
l1 and bυ by Bilgiç and Furkan, (2007) and over the sequence spaces lp and bυp (1 < p < ∞)
by Furkan et.al (2010). The spectrum of the triangular operator-matrix D(r, o, s, o, t) has been
examined by Tripathy and Paul, (2013) the spectrum and fine spectrum of generalized second
order forward difference operator ∆2

u,υ,w on the sequence spaces l1 have been studied by Panigrahi
& Srivastava, (2012) and etc.

Note that the formulas of spectrum for double-band matrices usually describe circular do-
mains.

But for triple and more triple-band matrices the receiving formulas of spectra from the point
of application looks like very complicated. We will return to this issue.

We recall some basic concepts of spectral theory which are needed for our investigation.
Let X be a Banach space and T : X → X be a bounded linear operator. By R (T ) we denote

the range of T , i.e.

R (T ) = {y ∈ X : y = Tx, x ∈ X} .
By B (X) we denote the set off all bounded linear operators on X into itself. If T ∈ B (X),

then the adjoint T ∗ of T is a bounded linear operator on the topological dual X∗ of X defined
by (T ∗f) (x) = f (Tx) for all f ∈ X∗ and x ∈ X.

Let X ̸= {θ} be a complex normed space and if D (T ) is a domain of definition of the linear
operator T : D (T ) → X,D (T ) ⊆ X, with T we associate the operator Tλ = T − λI, where λ is
a complex number and I is the identity operator on D (T ). If Tλ has an inverse which is linear,
we denote it by. T−1

λ = (T − λI)−1 and call it the resolvent operator T . Many properties of Tλ

and T−1
λ depend on λ, and spectral theory is concerned with those properties.

Definition 1. Let X ̸= {θ} be a complex normed space and T : D (T ) → X be a linear operator
with domain D (T ) ⊆ X. A regular value λ of T is a complex number such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded,

(R3) T−1
λ is defined on a set which is dense in X.

The resolvent set of T , denoted by ρ (T ), is meant σ (T,X) = C/ρ (T,X)) in the complex
plane C is called the spectrum of T . Furthermore, the spectrum of σ (T,X) is partitioned into
three disjoint sets as follows:

The point (discrete) spectrum σ (T,X) is the set such that T−1
λ does not exist. Any such

λ ∈ σp (T,X) is called an eigenvalue of T .
The continuous spectrum σc (T,X) is the set such that T−1

λ exists and satisfies (R3), but not
(R2) that is, T−1

λ is unbounded.
The residual spectrum σr (T,X) is the set such that T−1

λ (may be bounded or not) but does
not satisfy (R3), that is, the domain of T−1

λ is not dense in X.

2 On the returned sequences

In this section we study some iterative processes arising in analysis spectral theory of linear
operators, in fixed point theory, theory of dynamical systems, theory chaos and etc. (Bilgic et
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al., 2007; Bilgic & Furkan, 2007; Furkan, 2010; Tripathy & Paul, 2013; Panigrahi & Srivastava,
2012; Kreyszing, 1978; Slavisa, 1965; Khan et al, 2012). We shall analyze special class of iterative
processes which we call returned sequences of real or complex numbers. By returned sequence
of order k we mean the sequence which it’s every term is subordinated with k number preceding
terms. In other words

an+k = q1an + q2an+1 + ...+ qkan+k−1, (1)

where (an) is a sequence of complex numbers, q1, q2, ..., qk giving complex numbers. For example,

an+2 = q1an + q2an+1. (2)

The sequence of the form (2) is a second order returned sequence. The arithmetic progression

an+1 = an + d

is a second order returned sequence. Really, from relations an+2 = an+1 + d, an+1 = an + d
we get that an+2 = −an + 2an+1. Another example,

(
n2
)
is a third order returned sequence.

Really, an+3 = an − 3an+1 + 3an+2, where an = n2.
From the point of view the returned sequence of the order k is a solution of the linear

homogeneous difference equation of the order k with constant coefficients. Setting first k terms
of returned sequence is equivalent to setting initial conditions of the Cauchy problem of the
difference equation.

Theory of linear homogeneous equations with constant coefficients sometimes allows to find
the general term of the returned sequence. But in many cases to do it very difficult. If in (2)
q1 = 0 and |q2| < 1,then the sequence (an) is a geometric progression. Note that from the point
of applications the next lemma present interest.

Lemma 1. (Akhmedov & El-Shabrawy, 2010; Tripathy & Das, 2015). Let (cn) and (dn) be
two sequences of complex numbers such that lim

n→∞
cn = c and |c| < 1. Define the sequence (zn)

of complex numbers such that zn+1 = cn+1zn + dn for all n ∈ N0 = N ∪ (0). Then the next
assertions are true:

(i) (zn) is bounded, iff (dn) is bounded;
(ii) (zn) is convergent, iff (dn) is convergent;
(iii) (zn) is a null sequence, iff (dn) is a null sequence.
It is clear that if dn ≡ 0, then the sequence is a second order returned sequence. In general

if the order of the returned sequence greater than two studying the behavior of such sequences
requires great effort.

Let us explain it for the case (2). Dividing both side of (2) by an−1 (an ̸= 0) we get

an+1

an−1
= q1

an
an−1

+ q2. (3)

Denote
lim
n→∞

an
an−1

= L.

Then from (3) we have
L2 − q1L− q2 = 0.

Last equation is called a characteristic equation of (2). There were attempts to study the
behavior of the sequence (an) for the case (2), where every term (beginning from third step)
is subordinated with two preceding terms. If number of subordinated numbers are three, the
order of the characteristic equation will be three, and if four, then order will be four, and so
on. But for these cases we can use this method until not more forth order equation excluding
some special cases. The fact is that beginning from fifth order in general cases we don’t have
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any general form for the roots in radical of the characteristic equation. Even for third order
equation to analyze the roots is very hard.

We offer new method for the investigation the behavior of the sequence (an) with condition
(1) not using characteristic equation. The following theorem is important and will be used in
the proof of theorems given in the present section.

Theorem 1. Let (an) be a sequence of complex numbers, k is a natural number and q1, q2, ..., qk
are given complex numbers such that |q1|+ |q2|+ ...+ |qk| < 1 and an+k = q1an + q2an+1 + ...+
qk−1an+k−2 + qkan+k−1, then (an) ∈ lp (1 ≤ p ≤ ∞).

Proof. Let us denote

S′
n =

n∑
m=1

|am| .

Using the relation (1) we get the next system

a1+k = q1a1 + q2a2 + ...+ qkak

a2+k = q1a2 + q2a3 + ...+ qkak+1 (4)

. . . . . . . . . . . . . . . . . .

an+k = q1an + q2an+1 + ...+ qkan+k−1.

Taking module of both sides of this system and adding them we have

|a1+k|+ |a2+k|+ ...+ |an+k| ≤ |q1| · (|a1|+ ...+ |an|) + |q2| · (|a2|+ ...+ |an+1|) + ...+
+ |qk| · (|ak|+ |ak+1|+ ...+ |an+k−1|) .

Adding to the both sides the missing terms and increasing right sides necessary terms we get.

|a1|+ |a2|+ ...+ |ak|+ |a1+k|+ |a2+k|+ ...+ |an+k| ≤
≤ |a1|+ |a2|+ ...+ |ak|+ |q1| · (|a1|+ ...+ |an|+ |an+1|+ |an+2|+ ...+ |an+k|)+

+ |q2| · (|a1|+ |a2|+ ...+ |an+1|+ |an+2|+ ...+ |an+k|) + ...+
+ |qk| · (|a1|+ ...+ |ak−1|+ |ak|+ |ak+1|+ ...+ |an+k−1|+ |an+k|) .

or
S′
n+k ≤ (|a1|+ |a2|+ ...+ |ak|) + (|q1|+ |q2|+ ...+ |qk|)S′

n+k.

From it we may have

S′
n+k ≤ |a1|+ |a2|+ ...+ |ak|

1− (|q1|+ |q2|+ ...+ |qk|)
. (5)

We see that the monotonic increasing positive sequences (S′
n) bounded and therefore it converges

absolutely.
Suppose

S′ = lim
n→∞

S′
n =

∞∑
n=1

|an| .

From (5) it follows that
|an| ≤ A · qn, (6)

where A = |a1|+ |a2|+ ...+ |an| , q = |q1|+ |q2|+ ...+ |qn| . Hence, (an) ∈ l1.
Now using (6) and the known inequality(

k∑
m=1

|bm|

)p

≤ kp−1
k∑

m=1

|bm|p (1 ≤ p < ∞)
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for any numbers bm (m = 1, 2, . . . , k) we get

|an+k|p ≤ kp−1 (|q1|p · |an−1+k|p + |q2|p · |an−2+k|p + ...+ |qk|p · |an|p) .

Now repeating the proof of the present theorem for l1 we can show that (an) ∈ lp (1 ≤ p ≤ ∞).
Theorem is completely proved.

Corollary 1. Under the condition of theorem 1 an = B · qn0 , B = const,

q0 = q1 + q2 + ...+ qk.

Proof. Denote

Sn =

n∑
m=1

am, S =

∞∑
m=1

am.

From the relation (4) we have

Sn+k − (a1 + a2 + ...+ ak) = q1Sn + q2Sn+1 + ...+ qkSn+k−1 − q2a1 − q3 (a1 + a2)−
−q4 (a1 + a2 + a3)− ...− qk (a1 + a2 + ...+ ak−1)

(7)

By the theorem the sequences {Sn} converges, lim
n→∞

Sn = S. From (7) we have

(1− (q1 + q2 + ...+ qk))S = a1+a2+ ...+ak−q2a1−q3 (a1 + a2)− ...−qk (a1 + a2 + ...+ ak−1)

or

S =
B

1− q0
, q0 = q1 + q2 + . . . qk,

B = a1 + a2 + ...+ ak − q2a1 − q3 (a1 + a2)− ...− qk (a1 + a2 + ...+ ak−1) .

We know that |q0| ≤ |q1|+ |q2|+ ...+ |qk| < 1 (by the condition of theorem 1). Then S = B ·
∑

qn0
and an = B · qn0 . This completes the proof of corollary.

3 Recent results

In this section our aim to review some recent results concerning the spectrum of the more than
that double band (triple, quadruple, and etc.) generalized difference operator-matrices acting in
some sequence spaces. In such works (Bilgiç et al., 2007; Bilgiç & Furkan, 2007) have been used
the method where the main role plays the analyzing of the roots of characteristic equations of
returned sequences of the order k (k ≥ 2).

Denote by c0, c, l∞ and bυ (or bυ1) the null, convergent, bounded and bounded variation
sequences spaces, respectively. Also by lp (1 ≤ p ≤ ∞) and bυp (1 ≤ p < ∞), we denote the
spaces of all p-absolutely summable and p-bounded variation sequences spaces, respectively.
Main focus in the works (Bilgiç et al., 2007, Bilgiç & Furkan, 2007) was the triple-band matrix
B (r, s, t), where

B (r, s, t) =


r 0 0 0 ...
s r 0 0 ...
t s r 0 ...
0 t s r ...
... ... ... ... ...

 ,

s and t are complex parameters which do not simultaneously vanish.
The next results were received.

Theorem 2. B (r, s, t) ∈ B (c0) (B(c)), and

∥B (r, s, t)∥(c0,c0) = ∥B(r, s, t)∥(c,c) = |r|+ |s|+ |t| .
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Theorem 3. B (r, s, t) ∈ B (lp) (B(bυp)) and

1. (|t|p + |δ|p + |t|p)
1/p ≤ ∥B(r, s, t)∥lp ≤ |r|+ |s|+ |t| .

2. ∥B(r, s, t)∥bvp ≤ |r|+ |s|+ |t| .

Choosing the square roots of s the next theorem have been proved.

Theorem 4. (Bilgiç et al., 2007, Theorem 2.1, 2.10 and 2.11) Let s be a complex number such
that

√
s2 = −s and define the set S by

S =

{
λ ∈ C :

∣∣∣∣∣ 2(r − λ)

−s+
√

s2 − 4t(r − λ)

∣∣∣∣∣ ≤ 1

}
.

Then σ(B (r, s, t) , X) = S, where X is one of the sequences c0, c, lp (1 ≤ p ≤ ∞) and bvp
(1 ≤ p < ∞), respectively.

The same results were received in (Tripathy & Paul, 2013, lemma 3, lemma 4, theorem 5)
for the artificial generalization of difference operator-matrix in c0 and c.

Let’s now discuss the works (Panigrahi & Srivastava, 2012; Vandajav & Undrakh, 2014),
where the above indicated questions were investigated for some triple band generalizations of
the difference operator-matrices, where nonconstant diagonals are different numerical sequences.
For example, the linear operator ∆υuw : c0 → c0 is defined by

∆υuwx = (υnxn + un−1xn−1 + wn−2xn−2)
∞
n=0 , with x−1 = x−2 = 0, where x = (xn) ∈ c0.

It is easy to see that the operator-matrix ∆vuw has the next matrix form

∆υuw =



υ0 0 0 0 0 0 ...
u0 υ1 0 0 0 0 ...
w0 u1 υ2 0 0 0 ...
0 w1 u2 υ3 0 0 ...
0 0 w2 u3 υ4 0 ...
... ... ... ... ... ... ...
... ... ... ... ... ... ...


.

Unfortunately, in both works (Panigrahi & Srivastava, 2012; Vandajav & Undrakh, 2014) as
continuation of the work Srivastava & Kumar, (2009) made many mistakes and as a consequence
received incorrect results. Also in both indicated works were used the method with characteristic
equation for the triple band matrix ∆υuw. Let’s cite the next theorem.

Theorem 5. Assume
√
u2 = u and define the set S by

S =

λ ∈ C :
2 |υ − λ|∣∣∣−u+
√
u2 − 4w(υ − λ)

∣∣∣ ≤ 1

 ,

where lim
n→∞

wn = w ̸= 0, lim
n→∞

υn = υ ̸= 0, lim
n→∞

un = u ̸= 0, wn ≥ 0, un ≥ 0 and (υn) be a

constant or strictly decreasing sequence of nonnegative numbers.

Then the spectrum of the operator ∆υuw on c0 is given by σ(∆υuw, c0) = S.

151



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

4 New Approach for the investigation the spectrum of the
operator B (r, s, t) in c0, c, lp and bυp (1 ≤ p ≤ ∞)

In this subsection as an example for the operator B (r, s, t) we show that it’s spectrum describe
circular domains in complex plane C.

For this we shall use theorem 1 of section 2.
As we indicated above our main focus here is on the matrix-operator B (r, s, t) . We assume

here and hereafter that r, s and t are complex parameters, such that they denote simultaneously
vanish. It is known that operator B (r, s, t) is a linear bounded operator (acting in c0, c, lp
(1 ≤ p ≤ ∞), bυp (1 ≤ p < ∞)), which were calculated (see theorem 2, theorem 3) of the section
3. The following lemmas will be used in the proofs of theorems given in the present section.

Lemma 2. Let 1 < p < ∞ and A ∈ B(l1)
∩
B(l∞), then A ∈ B(lp).

Lemma 3. A linear operator T has a dense range if and only if T the adjoint T ∗ of T is one
to one.

Theorem 6.

σ(B (r, s, t) , lp) = σ(B(r, s, t), c0) = σ(B(r, s, t), c) = σ(B(r, s, t), l∞) = σ(B(r, s, t), bυp)D,

where
D = {σ ∈ C: |λ− r| ≤ |s|+ |t|}.

Proof. It is sufficient to prove the theorem for the space l1. First we prove that (B (r, s, t)−λI)−1

exists and is in B(l1) for λ /∈ D and the operator B (r, s, t) − λI is not invertible for λ ∈ D.
Formally we can calculate that

(B (r, s, t)− λI)−1 =



a1 0 0 0 0 ...
a2 a1 0 0 0 ...
a3 a2 a1 0 0 ...
a4 a3 a2 a1 0 ...
... ... ... ... ... ...
... ... ... ... ... ...

 ,

where

a1 =
1

r − λ
, a2 = − s

(r − λ)2
, a3 =

s2 − (r − λ)t

(r − λ)3
, ..., an = − s

r − λ
an−1 +

t

r − λ
an−2 (8)

for all n ≥ 3. Denote

q1 =
−s

r − λ
, q2 =

−t

r − λ
.

Then from (8) we have
an = q1an−1 + q2an−2 (9)

for all n ≥ 3. We see that the sequences (an) defining by (9) is a second order returned sequences.
Let λ /∈ D. Then we have

|λ− r| > |s|+ |t| .

That is
|s|+ |t|
|λ− r|

< 1. (10)

Now instead last inequality we take

|s|+ |t|
|λ− r|

= |q1|+ |q2| < 1.
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Repeating the proof of theorem 1 and it’s corollary
∥∥(B (r, s, t)− λI)−1

∥∥
l1
is bounded if and

only if holds (10). This shows that (B (r, s, t)− λI)−1 ∈ B (l1) .

Similarly we can show that (B (r, s, t)− λI)−1 ∈ B(l∞) since λ ∈ D ⇒ |λ− r| > |s|+ |t| or
|q1|+ |q2| < 1. Using the lemma 2 we assert that (B (r, s, t)− λI)−1 ∈ B(lp) (1 < p < ∞).

Using the above reasoning about lp we may show that the last assertion is true also for the
spaces lp(1 < p < ∞). It is easy to show that the assertion of this theorem is true also for the
spaces c0,c and bυp (1 ≤ p < ∞). Theorem is proved completely.

Theorem 7.

σp(B(r, s, t), X) = ∅,

where Xis one of the spaces c0, c, lp and bυp(1 ≤ p < ∞).

Theorem 8.

σ(B∗(r, s, t), X∗) = {λ ∈ C, |λ− r| < |s|+ |t|},

where B∗(r, s, t) is Banach adjoint of B(r, s, t) and X∗ is a dual space of the spaces of c0c and
lp(1 ≤ p < ∞) respectively.

Proof. The assertion of this theorem follows from known fact that

σ(A,X) = σ(A∗, X∗).

for any operator A ∈ B(X), X is a Banach space and X∗ is a dual of X.

Theorem 9.

σr(B(r, s, t), X) = {λ ∈ C: |λ− r| < |s|+ |t|},

where Xis one of the space c0, c, lp and bυp (1 < p < ∞).

Theorem 10.

σc(B(r, s, t), X) = {λ ∈ C: |λ− r| = |s|+ |t|}.

Proof. Since σ(B(r, s, t), X) is the disjoint union of the parts σp,σr, and σc. The assertion of
the theorem is true. The theorem is proved.

Similarly we can prove the next theorems.

Theorem 11.

σr(B(r, s, t), X) = {λ ∈ C: |λ− r| ≤ |s|+ |t|},

whereXis one of the space l1 and bv.

σc(B(r, s, t), X) = Ø.

Theorem 12.

σr(B(r, s, t), X) = {λ ∈ C: | λ− r| < |s|+ |t|},

where X is one of the spaces of c0, c, lp (1 ≤ p ≤ ∞) and bυp (1 ≤ p < ∞).

Proof. Since σ(B(r, s, t), X) is the disjoint union of the parts

σp(B(r, s, t), X), σc(B(r, s, t), X) and σr(B(r, s, t), X) in Banach space X we must have the
assertion of the present theorem.
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5 Conclusion

In this work we summarize recent results concerning the spectral analysis of some generalized
difference operator-matrices over some sequence spaces. Especially we take into consideration
the triple and more than triple operator-matrices. As it is known the investigation the spectra of
triple band and more than triple band difference operator-matrices leads us to the next relation
of the type

an+k = q1an + q2an+1 + . . .+ qkan+k−1,

where {qm} is a fixed finite system of complex numbers, {an} is a sequence of the terms of the
solvent of considered operator-matrices. It appears that such kind of relation arise in many
problems of not only in analysis and also in fixed point theory, dynamical systems, theory
chaos and so on. Therefore to study the behavior of these sequences present scientific interest.
In some works were made an attempt to study this problem. No diminishing the value of
obtained results we state that the using the “characteristic equation” method may work till not
more fourth order inclusive. Even in third order case the formulas of the spectra of considered
operator-matrices are very complicated. In present work for the eliminating of indicated above
flaws we apply new method allowing to study the spectral problems of any generalized repeated
band difference-operator-matrices.
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Altay, B., Başar, F. (2005). On the fine spectrum of the generalized difference operator B(r, s)
over the sequence spaces c0 and c. Int. J. Math. Sci., 18, 3005-3013.
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